- Scalar Line Integrals
 - $\circ \int_C f ds$
 - The scalar line integral of a function f along a piecewise smooth curve C parameterized $\vec{r}(t)$ is $\int_C f ds = \int_{t_1}^{t_2} f(\vec{r}(t)) |\vec{r}(t)| dt$.
 - This is just a simple substitution. Recall that $\frac{ds}{dt} = |\vec{r}'(t)|$. Therefore, we can substitute $ds = |\vec{r}'(t)|dt$
 - $\circ \int_{C} ds$ is the length of the curve C in space.
 - O If f(x, y) is a function in space, then $\int_C f ds$ is the area under the curve above the xy-plane.
 - o Does not depend on orientation!
 - o Applications: mass, total charge of a wire, area of a curvy fence.
- Scalar Surface Integrals in Three-Space
 - $\circ \iint_{S} fdS$
 - The scalar surface integral of a function f through a smooth surface S parameterized $\vec{r}(s,t)$ is $\iint_S f dS = \iint_D f(\vec{r}(s,t)) |\vec{r}_s \times \vec{r}_t| dA$, where D is the domain of S in the st-plane.
 - This is just a simple substitution. $dS = |\vec{r}_s ds \times \vec{r}_t dt|$ since dS can be approximated as an area of a parallelogram as linear approximation is a good approximation since dS is infinitely small. Thus, $dS = |\vec{r}_s ds \times \vec{r}_t dt| = |\vec{r}_s \times \vec{r}_t| ds dt = |\vec{r}_s \times \vec{r}_t| dA$, where dA lives in the st-plane. Therefore, we can substitute $dS = |\vec{r}_s \times \vec{r}_t| dA$.
 - o If you can evaluate the surface integral in the st-plane, no Jacobian is necessary! The Jacobian is only necessary when utilizing a change of variables.
 - o $\iint_S dS$ is the surface area of S in space.
 - Does not depend on orientation!
 - o Applications: mass, total charge of a lamina.