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 Scalar Line Integrals 
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o The scalar line integral of a function f along a piecewise smooth curve C 
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 This is just a simple substitution. Recall that )(' tr
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ds is the length of the curve C in space. 

o If ),( yxf is a function in space, then 
C

fds is the area under the curve above the 

xy-plane. 

o Does not depend on orientation! 

o Applications: mass, total charge of a wire, area of a curvy fence. 

 Scalar Surface Integrals in Three-Space 
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o The scalar surface integral of a function f through a smooth surface S 
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in the st-plane. 

 This is just a simple substitution. dtrdsrdS ts
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 since dS can be 

approximated as an area of a parallelogram as linear approximation is a 

good approximation since dS is infinitely small. Thus, 
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o If you can evaluate the surface integral in the st-plane, no Jacobian is necessary! 

The Jacobian is only necessary when utilizing a change of variables. 

o 
S

dS is the surface area of S in space. 

o Does not depend on orientation! 

o Applications: mass, total charge of a lamina. 

 

 

 

 

 

 


